Close Menu
    Facebook X (Twitter) Instagram
    Trending
    • HONOR Takes Home Two TIME Best Inventions 2025 Awards for Smartphone Breakthroughs
    • Toronto Set to Host Largest LEGO® Fan Event in Canadian History
    • Hank Azaria and Caitlin Morrison Champion Mental Health Through Music at Toronto’s Koerner Hall
    • Bricks in the Six to Build Canada’s Largest-Ever LEGO® Fan Event This November
    • Parents-Turned-Philanthropists Expand Lifeline for Families with Autism
    • MSI Unveils Black Friday Discounts on Flagship Laptops and Handhelds
    • How to Choose the Right Managed IT Service Provider for Your Needs
    • 7 Reasons Why Your Business Needs an IT Service Provider
    Facebook X (Twitter) Instagram YouTube
    Vaughan TodayVaughan Today
    • Home
    • Top News
    • World
    • Banking
    • Explore Canada
    • How to
    • Solutions
    • Contact Form
    Vaughan TodayVaughan Today
    Home»science»Geneva discovery gives hope in the fight against obesity
    science

    Geneva discovery gives hope in the fight against obesity

    Maria GillBy Maria GillDecember 2, 2021No Comments4 Mins Read
    Geneva discovery gives hope in the fight against obesity
    Share
    Facebook Twitter LinkedIn Pinterest Email

    publishedDecember 2, 2021, 6:00 pm

    Scientists from UNIGE found that the size of the intestine changes depending on the amount of food eaten. This is via a protein that can be inactivated.

    The more we eat, the more our intestines change to absorb calories more efficiently.  The process is however reversible.

    The more we eat, the more our intestines change to absorb calories more efficiently. The process is however reversible.

    Getty Images / istockphoto

    Obesity is primarily the result of an imbalance between energy expenditure and calorie absorption. If you don’t burn it enough, you will gain weight. 40% of the world’s population is overweight and more than 10% is obese. Thus, one way to understand how humans grow is through the intestines.

    This is where food that has been previously broken down before passing into the bloodstream is absorbed to be distributed throughout the body. And to absorb enough calories, the intestinal wall is covered in millions of convolutions called villi and microvilli, which will, eventually, cover the surface of the football field, the University of Geneva explains in a press release.

    Amazing Intestinal Plasticity

    “A few years ago, we discovered that the intestines can be lengthened or shortened depending on environmental factors and physiological needs,” recalls Mirko Trajkowski, professor in the Department of Cell Physiology and Metabolism and at the Diabetes Center. From UNIGE Medical School. Exposure to cold, for example, could be one of those external stimuli that changed the length of the intestines.

    But how does this intestinal plasticity work? Using mice and 3D models of the human intestine, the researchers found that the food eaten is the main factor in changing the size of the intestine. “We observed a relatively rapid and physiologically impressive response to increased food intake: the intestine subsequently lengthened by more than 30% and was associated with a significant growth in the size of the villi and microvilli.” , explains Mirko Trajkowski, lead author of the study published Dec “Nature Communication”. The fact that these villi also grow larger, as can be seen below, made it possible to absorb calories more efficiently.

    Sections of mouse intestine.  Above, normal intestinal circumference (in black) and villi (in pink).  Below, the intestine is enlarged after overeating with obesity, with a larger circumference and longer villi.

    Sections of mouse intestine. Above, normal intestinal circumference (in black) and villi (in pink). Below, the intestine is enlarged after overeating with obesity, with a larger circumference and longer villi.

    Mirko Trajkovsky

    What is also interesting is that the process is reversible. If less food is eaten, the length and shape of the intestines return to almost normal. The scientists also found that increased intestinal absorption surface area drives various mechanisms that allow cells to convert food into energy. One of them, called the PPARα pathway, has proven to be absolutely essential. Indeed, the PPARα protein appears to control both the increase in villi length and caloric absorption capacity. It raises the level of another protein called PLIN2, which, by promoting the formation of fat droplets in the cells of the intestine, facilitates the absorption of fats.

    Reducing the ability of the intestine to absorb

    This mechanism can be confirmed by inactivation of PPARα in the gut of mice. Mirko Trajkowski notes that “its pharmacological inhibition did indeed lead to a marked decrease in the intestinal absorption capacity and also made it possible to reverse the fat accumulation and obesity caused by a high-calorie diet.”

    Therefore this could constitute an interesting alternative to gastric bypass (surgery consisting of reducing the size of the stomach and modifying the nutritional circuit) or to other irreversible interventions aimed at reducing weight gain and obesity-related complications. But making PPARα inactive can be difficult. This protein “plays a key role in many metabolic functions, and is expressed in many tissues. Before presenting our findings to patients, we will therefore have to find a way to inhibit it only in the intestine without affecting other organs.” However, this is still a serious and promising line of research.

    Share. Facebook Twitter Pinterest LinkedIn WhatsApp Reddit Tumblr Email
    Maria Gill

    "Subtly charming problem solver. Extreme tv enthusiast. Web scholar. Evil beer expert. Music nerd. Food junkie."

    Related Posts

    Rare Earth Metals: Essential Uses and the Global Supply Chain

    October 4, 2025

    200 meteorites found on Earth could be linked to Martian craters, allowing new insight into Mars’ history

    August 28, 2024

    Antibiotics that reduce the risk of stomach cancer

    August 26, 2024
    Facebook X (Twitter) Instagram Pinterest
    © 2025 ThemeSphere. Designed by ThemeSphere.

    Type above and press Enter to search. Press Esc to cancel.